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The concept of mode of rearrangement is used to analyse the connectedness of the reaction 
graph for the Cope rearrangement in buUvalene. 

1. Introduction 

In a recent paper [1], Klin, Tratch and Zefirov discussed a criterion for the con- 
nectedness of a reaction graph. Their demonstration was illustrated by several 
examples, including the reaction graph for the Cope rearrangement of bullvalene, 
for which they compared several models. According to these authors, the proper- 
ties of the reaction graph depend on the "selection of an adequate model" which 
"requires two separate decisions: one about the subgroup H and one about the 
coset which is adjacent to H in the reaction graph". 

In fact, the models discussed in ref. [1] differ from each other by the different 
treatment of improper symmetry operations. The main purpose of the present 
work is to show that the concept of mode of rearrangement provides an unambigu- 
ous way to construct reaction graphs, as far as one agrees about the mechanism 
(here the Cope rearrangement) and the skeleton symmetry (here C3v). The models 
of ref. [1] are then analyzed in terms of the mode of rearrangements approach. 
Finally, the relation between ref. [1] and previous work on Longuet-Higgins 
groups [2] and on residual stereoisomerism [3] is pointed out. 

2. Theoretical background 

We recall some definitions which are useful for the subsequent discussion. 
Details may be found elsewhere [4]. Let G be the permutation group expressing the 
molecular symmetry and A the subgroup of G which contains only proper 
rotations: 
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G= AUA~r, (1) 

where U stands for "union" and cr is any improper operation. For chiral molecules 

G = A .  (2) 

For a skeleton with n sites, the n! permutations in the symmetric group Sn of degree 
n are to be considered. A general permutation x ~ Sn represents a given rearrange- 
ment. To such a permutation, one might associate a "A coset" Ax or a "G coset" 
Gx. Of course, 

G x  = A x  U A , z x  (3) 
is a union of two A cosets. The coset Ax represents a configuration, i.e. a potential 
minimum or a set of permutations which are rotationally equivalent to x (they dif- 
fer from xby  a proper rotation). 

The numberp of configurations is 

IS.I n! 
- -  - - -  ( 4 )  P-IAI IAI' 

where IAI is the order of A. 
As shown in eq. (3), Gx represents a pair of enantiomeric configurations Ax 

and Acrx, which correspond to completely different rearrangements when starting 
from the configuration represented by A. For instance, let us consider NF3 and 
NH3, of C3v structure. In this case S~ = $3 = G andp  = 2. The two configurations 
are represented by A and Am Applying A to a starting configuration means per- 
forming an always feasible rigid rotation whereas Act represents umbrella inversion 
which is feasible [2] at ordinary temperatures for NH3 but not for NF3. 

We may also define A subclasses and G subclasses. The A subclass of elements 
a-lxa, a eA, contains all the permutations conjugate to x by a proper operation; 
{g-lxg; g ~ G} is defined similarly by using proper and improper operations and is a 
G subclass. 

We now recall a fundamental definition: a mode of rearrangements [4-7], is the 
set M(x) of permutations which are indistinguishable from x because 
(a) they generate the same final configuration as x, starting from a given one 

and/or  
(b) they must occur with the same probability as x. 

Clearly condition (a) leads to consider Ax whereas (b) leads to consider either 
g-lxg in achiral environment or a-lxa in chiral environment [4,7]. Hence, one 
obtains 

M(x) = (AxA) U (Aaxcr-lA) (5) 

in achiral situations and 

M(x) = AxA (6) 

in chiral ones. In the case of degenerate rearrangements, i.e. when starting and 



J. Brocas / Cope rearrangement in bullvalene 391 

final configurations are isoenergetic, x and x -1 also occur with the same probabil- 
ity. Nourse [8] has introduced the important distinction between self-inverse (SI) 
and non self-inverse (NSI) rearrangements. It has been shown that M(x) and 
M(x -1) are identical or distinct according to whether the rearrangement is SI or 
NSI [9]. In the last case the extended mode 

Moxt(X) = M(x)  u M(x  -1) (7) 

has to be considered instead of M(x) [10-12]. 
Since Ax and Acrx represent enantiomeric configurations let us define [6] 

M(ox)  = u (Ax  -1a)  , (8) 

which generates the configurations enantiomeric to those generated by M(x). 
Therefore M(x) and M(crx) are called a pair ofenantiomeric modes. The set 

M(x) t.3 M(crx) = GxG (9) 

is called a racemic mode of rearrangements since it generates pairs of enantiomeric 
configurations. 

It could happen that M(x) itself generates pairs of enantiomeric configura- 
tions. Hence, M(o'x) also does and in this case M(x) = M(ox) are both racemic 
modes and are equal to GxG. 

Using the above definitions, one may unambiguously associate a reaction graph 
to any mode M(x). The vertices of the graph represent the Ax cosets or configura- 
tions. A given initial configuration is transformed into 6x final ones by M(x). 
These transformations are represented by ~x edges starting from the initial vertex. 
The connectivity [13] 3x of the mode M(x) is the degree of the (regular) reaction 
graph. It is easy to show that [14] 

6x - IRI 
i x _ l R x n R  I , (10) 

where the Hougen group [15] is given by 

R = A U aaJ 

(J is inversion about the center of mass). The 6x final vertices are in turn trans- 
formed by application of M(x) and so on until no new configurations are gener- 
ated, after, say f ,  such steps. Then the set 

f 
P(x) = U[M(x)]" (11) 

n=l  

is a group containing the permutations representing all the configurations reached 
during these successive steps [16-20]. The number of such configurations is 

p' - IP(x)------J] (12) 
IAI ' 

wherep' <~p since P(x) is a subgroup of S, (see. eq. (4)). 
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3. Discussion 

In ref. [1 ], the groups P(x) are defined by the set of permutations generating the 
group H which is either G or A and by a permutation characteristic of the rearran- 
gement at hand. From the discussion of the preceding section (eqs. (5), (6), (9) and 
(11)), it is easy to find the generating set of P(x) [21]: 

in chiral environment: P(x) = ( { a i } ,  x> , (13a) 

in achiral environment: P(x) = ({ai},x,c~xcr-1), (13b) 

and when GxG is used instead ofM(x):  

P(x) = ({gi}, x>, (14) 

where ( ) has the same meaning as in [1] (i.e., the group generated by the enclosed 
elements) and where {ai} and {gi} are the sets of generators for A and G, 
respectively. 

We now discuss the case of bullvalene along the same lines as in ref. [1]. In fig. 1, 
the Cope rearrangement is represented. It is easy to see that x = (1027548) (39) is 
one of the permutations representing the Cope process. The sets of permutations 

A x  = (1027548) (39), (18) (25) (30) (49) (67), (1926438) (40), (15) 

Acrx = (1948) (267530), (18) (25) (39) (40), (1038) (276549) (16) 

are readily obtained by multiplication of the proper operations of the Cav skeleton 

A = I, (234) (567) (890), (243) (576) (809) 

and of its improper operations 

Act = (34) (67) (90), (24) (57) (80), (23) (56) (89) 

by x. It appears immediately that the permutation g = (18) (25) (39) (40) of 
ref. [1] appears in A crx and not in A x (see eqs. (15) and (16)). 

i ~ 8 

O ~  8 4 ~ 6 ~  ~ ) l 
7 5 Cope 5 ~ - ' ~  ~ 7 5--2 6 7 

9 9 3 

l X =(1027548) (39) I 
Fig. 1. The Cope rearrangement in bullvalene. 
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Hence the x obtained in fig. 1 and the g used in ref. [1] belong to enantiomeric 
configurations. Clearly x represents a Cope rearrangement. Does g = crx also do 
so? The answer is yes if and only if M ( x )  = M(~rx), i.e. if the Cope mode is racemic 
(generates pairs of enantiomeric configurations). This is however not the case: 
M ( x )  contains only odd permutations while M ( a x )  contains only even ones (see 
eqs. (5) or (6) and remember that A contains only even permutations). Therefore x 
and g belong to different modes: they are the representatives of a pair of distinct 
enantiomeric modes (see eq. (8)). The permutation g does not represent the rearran- 
gement known as a Cope rearrangement: its relation with a Cope rearrangement is 
the same as the relation of umbrella inversion in NH3 with molecular rotation. 

We may now apply eqs. (13) and (14) to the case of bullvalene. We use 
successively 
(a) the permutation x representing the Cope rearrangement (see fig. 1) or, equiva- 

lently, the permutation ~, of ref. [1], which belongs to the same A coset (see 
eq. (15)); 

(b) the permutation ax  = g of ref. [1] which represents the enantiomer of the 
Cope rearrangement. The groups P(x)  obtained in this way are given in table 1. 
The columns refer to the use of eqs. (13a), (13b) and (14), respectively. Note 
that eqs. (13a) and (13b) lead to identical results since A x A  = Ao-xo--1A for 
both the Cope rearrangement and its enalztiomer. Hence chiral situations and 
achiral ones need not to be treated separately (see eqs. (5) and (6)). The results 
of table 1 are readily obtained by using the arguments ofref. [1]. 

It appears that in both chiral and achiral situations, the chemical graph for the 
Cope rearrangement is connected (p = p' = 10!/3; see eqs. (4) and (12)) since the p 
configurations are reached by successive steps. For the enantiomer of this rearran- 
gement however, half of the p possible configurations are reached (ff = p/2) .  The  
use ofracemic mode GxG deserve special comments (last column in table 1). In this 
case, no distinction is made between a rearrangement and its enantiomer, i.e. a con- 
figuration A x  and its enantiomer A a x  are considered as equivalent. The vertices 
of the chemical graph representing the GxG racemic mode represent no longer 
"A cosets" but "G cosets", i.e. Gx; its edges represent interconversions of pairs of 
enantiomeric configurations. In this case, eqs. (4) and (12) are to be replaced by 
P = I S.I/IGI and p' = I e(x) I/l G I, respectively. Such graphs have been studied in the 
literature. For instance, it has been shown that the Petersen graph represents the 
exchange of axial and equatorial ligands in trigonal bipyramids, disregarding 
differentiation between enantiomers [22-24]. 

Table 1 
The groups P(x). 

Chiral Achiral GxG 

Cope rearrangement $1o (IIb) Slo (IIb) Slo (I) 
Enantiomer of Cope rearrangement A lo (IIa) Al0 (IIa) Sl0 (I) 
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The symbols I, IIa, IIb in table 1 refer to the models discussed in ref. [1]. F r o m  
the above discussion, it appears that  only model  IIb (and not IIa) corresponds to 
the graph for Cope rearrangement .  Model  I has been defined with a generator  g 
describing the enant iomer  of  this rearrangement .  However,  since GxG = GcrxG, 
the graphs generated by x (Cope) or crx = g (enant iomer of  Cope) are identical 
when differentiation between enantiomers is disregarded, as in model  I. 

4. C o n c l u s i o n  

We conclude with some comments  about  the existence of  two connected compo-  
nents, which is of  course an interesting possibility. According to the arguments  of  
the present  work, it is ruled out  for Cope rearrangement  but  is effective for its enan- 
t iomer. It is a direct consequence of  the pari ty of  the permutat ions.  There exists 
numerous  examples of  stereochemical changes leading to multiple connected com- 
ponents  [25]. For  instance, in trigonal bipyramidal  skeleta the so-called even 
modes  with generators x = (ae) (ae) or (aee) (a = axial, e = equatorial)  give rise 
to two connected components.  In this case also, enant iomeric  configurat ions 
belong to different components  [4]. Similar situations have been described for 
instance in the case of  XeF6 interconversions [26,27] and for interconversions of  
octacoordinate  square antiprisms [21,28]. The existence o f  multiple connected 
components  is related to 
(a) the existence of  sets of  residual stereoisomers such that  isomers within a given 

set are interconverted by the considered rear rangement  mode  while isomers be- 
longing to different sets are not  [3]. 

(b) the Longuet -Higgins  groups i.e. the sets of  permutat ions (and permutat ions-  
inversions) of  identical nuclei which describe feasible t ransformat ions  [2]. Ex- 
amples m a y  be found in refs. [16-21]. For  a recent review see ref. [29]. 

We think that  the concept of  mode  of  rearrangements  provides an unambiguous  
way to construct  react ion graphs and to enumerate  their connected components .  
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